
Text Generation from Abstract Meaning
Representation

Lisa Jin

Area Committee:
Prof. Daniel Gildea, Chair

Prof. Lenhart Schubert
Prof. Chenliang Xu

Abstract. Given the minimal nature of semantic structures, generating
text from them is a fairly unconstrained task. The crux lies in the need for
linguistically fluent output that is drawn from a sparse, high-dimensional
vocabulary. Learning to flexibly map from semantic structures to these
output strings can involve ambiguity. This paper surveys a continuum of
statistical and neural approaches for such natural language generation
(NLG). It further introduces a neural decoder for NLG from AMR that
is constrained by a transition-based parser. The model jointly predicts
transition system actions and English tokens to more directly learn word-
order traversals of AMR graphs.

1 Introduction

Tasks transforming between semantic representations and natural language usu-
ally include text generation as a subroutine. This applies to subareas such as
machine translation, summarization, and question-answering. With respect to
MT, for instance, it may be possible to derive a common semantic structure
between source and target strings. Translation would thus involve predicting a
target string from the hypothesized semantic representation.

Text generation often involves complex linguistic inference. A successful NLG
system produces fluent strings that still capture the meaning of a given rep-
resentation. These meaning representations are often structurally dense (e.g.,
tree- or graph-like) and consist of only the necessary semantic details. In addi-
tion, there may be a myriad of choices in terms of co-reference, named entities,
verb-argument dependencies, etc. The spare input coupled with a vast search
space burdens the generator with ambiguity; it must make informed syntactic
and lexical decisions based on abstract semantics. Below is an Abstract Mean-
ing Representation (AMR) (Banarescu et al., 2013) annotation from The Little
Prince corpus1 of the sentence, “Try to be happy”.

(t / try-01 :mode imperative

:ARG0 (y / you)

:ARG1 (h / happy-01

:ARG1 y))

1 https://amr.isi.edu/download/amr-bank-struct-v1.6.txt

https://amr.isi.edu/download/amr-bank-struct-v1.6.txt

2 Jin

AMRs are rooted, directed graphs that model propositional meaning. In the
above example, the AMR is written using nested subgraphs (enclosed in paren-
theses) with colon-prefixed edge labels, single-letter instance variables, and con-
cept labels. The concepts, or vertices, are denoted by variable names and/or full
concept labels. The relations, or edges, are each initialized via an edge label and
pair of concept endpoints. Below is an AMR as a logical conjunction of triples.

∃ t, y, h:

instance(t, try-01) ∧ instance(y, you) ∧ instance(h, happy-01) ∧
mode(t, imperative) ∧ arg0(t, y) ∧ arg1(t, h) ∧ arg1(h, y)

Note that the concept (y / you) is reused as the child of two distinct parents—a
case of graph re-entrancy that distinguishes graphs from trees. The concept acts
as the pronoun “your” for the implicit “happiness” and as the subject “you” of
the full sentence. This is a case where the input AMR encodes semantics that
lack lexical realization in the sentence. An NLG system must clearly be robust to
both missing and extra input information relative to its goal. A more complete
treatment of AMR will follow in Section 3.2.

1.1 Generation in Terms of Parsing

Since AMR and other semantic structures represent logical meaning, extracting
English text in a principled way is nontrivial. However, it is possible to identify
links—or alignments—between input concepts and output words as a starting
point. Though AMR lacks ground-truth alignments between concepts and words,
there exist probabilistic models for approximating them (Flanigan et al., 2014).
The quality of such alignments has proved to be crucial in the context of AMR
parsing (Lyu and Titov, 2018). Therefore, it is easy to see that such concept-word
mappings may be useful in the reverse problem of AMR-to-text generation.

To build a graph from word-aligned concepts, transition-based parsing is at-
tractive due to the search space constraints imposed by transition rules. Namely,
these parsers are incremental in that inputs are processed individually from left-
to-right. Traditional shift-reduce parsers begin with an ordered buffer of vertices,
shifting them one-by-one onto the stack upon execution. After each shift oper-
ation, the system considers building an edge between the current buffer vertex
and each stack element. This class of parsers is deterministic, as parse actions are
predicted based on the ‘current’ parser configuration. With running time O(n2),
a shift-reduce parser can construct graphs of arbitrary complexity. In this man-
ner, the input string maps to parser actions that can be applied sequentially to
build its graph.

If AMR parsing extracts concepts from words and links them into a graph,
then generation can be seen as the inverse of these two operations. These two
stages correspond to concept and relation identification. For the parsing problem,
even if the set of concepts is fixed, there are an exponential number of possible
graphs from this set. The analogous problem in generation may be ‘linearizing’
an AMR into its string by visiting its concepts in an order aligned to the output

Text Generation from Abstract Meaning Representation 3

string. With this perspective, the bottleneck in generation would be finding graph
traversals that correspond to word order. Since parsers map between input word
order and topology of the graph, they provide valuable insight for learning such
traversals.

1.2 Cache Transition System

A specific type of parser called the cache transition system (Gildea et al., 2018)
uses a fixed-size cache to leverage highly interconnected subgraphs during pars-
ing. Compared to the shift-reduce parser that builds edges exhaustively, the
cache transition system restricts its attention to a working set of vertices. This
economy in memory allows for improved efficiency, enabling the parser to run in
time O(n).

Tree Decomposition. The cache transition system operates on the theoretical
notion of treewidth for a graph’s tree decomposition. Intuitively, a tree decompo-
sition defines an overlapping partition of vertices into minimally connected sets.
For a graph G = (V,E), vertex sets Xi called bags and a set of arcs F between
them make up a tree decomposition TD(G) = ({Xi | i ∈ I}, T = (I, F)) with
the following properties.

– Vertex cover : Every graph vertex v ∈ V exists in some bag Xi.
– Edge cover : Endpoints of every edge (u, v) ∈ E exist in a particular bag.
– Running intersection: Bags containing a specific vertex are connected in a

subtree of T ; if j uniquely connects i and k in T , Xi ∩Xk ⊆ Xj ∀i, j, k ∈ I.

A tree decomposition’s width is determined by its largest bag, or maxi |Xi| − 1,
and a graph’s treewidth is the lowest such width among all its tree decompo-
sitions. At the extremes, trees have treewidth 1 (due to acyclicity) while fully
connected graphs have treewidth n − 1 for n total vertices. Fig. 1 has n = 3
vertices and is a fully connected graph with treewidth n− 1 = 2.

t

y h

Fig. 1. Simplified semantic graph for the sentence, “You try to be happy”. The vertex-
word mappings are {y: you, t: try, h: happy}.

Relative to a traversal order of vertices, a cache transition system is only able
to parse graphs of maximal width m− 1 for cache size m. This constraint limits
the class of graphs that can be successfully parsed, offering a deeper mapping
between parser actions and a graph’s underlying structure.

4 Jin

Parser Components and Execution. Formally, a cache transition parser
consists of a stack, cache, buffer, and edge set; its configuration can be written
as c = (σ, η, β, E). As in a shift-reduce parser, the buffer β is initialized with a
sequence of vertices. The cache η is a random-access data structure of vertices
that are active candidates for edge endpoints. At any point in time, edges may
only be formed between the rightmost cache vertex and all other cache elements.

After a push(i, C) transition, cache element η[i] is displaced by β[1] and
shifted to the stack σ. Element η[m] is linked to elements at cache indices
C ⊆ [1 . . .m]. A pop transition returns the topmost stack element to its origi-
nal position i, shifting all right-hand cache elements right by one. A transition
modifies exactly one element in the cache—each new cache configuration of size
m corresponds to a bag of equal size in a tree decomposition. The unique cache
states in Fig. 2 are a preorder depth-first traversal of a derivation tree (Fig. 3).

stack cache buffer edges resulting from action

[] [$, $, $] [y, t, o, b, h] ∅ —
[1, $] [$, $, y] [t, o, b, h] ∅ push(1, ∅)

[1, $, 1, $] [$, y, t] [o, b, h] E1 push(1, {2})
[1, $, 1, $, 1, $] [y, t, o] [b, h] E1 push(1, ∅)

[1, $, 1, $] [$, y, t] [b, h] E1 pop
[1, $, 1, $, 1, $] [y, t, b] [h] E1 push(1, ∅)

[1, $, 1, $] [$, y, t] [h] E1 pop
[1, $, 1, $, 1, $] [y, t, h] [] E2 push(1, {1, 2})

[1, $, 1, $] [$, y, t] [] E2 pop
[1, $,] [$, $, y] [] E2 pop

[] [$, $, $] [] E2 pop

Fig. 2. A cache transition system run building the Fig. 1 graph. Sets E1 = {(y, t)}
and E2 = E1∪ {(y, h), (t, h)}. Set {o: to, b: be} does not appear in the final graph.

•[$, $, $]

•[$, $, y]

•[$, y, t]

•[y, t, o] •
[y, t, b]

[y, t, h]•

Fig. 3. Derivation tree representing the run in Fig. 2, adapted from Gildea et al. (2018).

Text Generation from Abstract Meaning Representation 5

2 Related Work

2.1 Early Approaches

Early work in text generation slowly began to favor statistical approaches over
template- or rule-based ones. The former can be labeled stochastic and the lat-
ter hand-crafted. The trade-off between lexical expressiveness and grammatical
validity also lead to hybrids of these approaches.

Word Lattices and Statistical LMs. One initial approach to NLG by Knight
and Hatzivassiloglou (1995) was inspired by a Japanese-English machine trans-
lation system. They frame the problem as generating text that is robust to (i)
imperfect semantic inputs and (ii) incomplete knowledge bases. For the former,
they encode each input into a word lattice (e.g., Fig. 4): a directed, acyclic net-
work of states with word-labeled transitions. This handles cases of underdefined
semantic input, as linguistic uncertainty can be expressed as multiple word paths
between the start and end states.

s e
a

an

the

large
owl

owls
stared

Fig. 4. Word lattice with six possible paths. Each vertex is a state, with ‘s’ marking
the start and ‘e’ the end state.

A PENMAN generator then uses lexical islands, or non-interacting word sets,
to decompose the search space. Since each lexical island corresponds to a state in
the word lattice, finding the best string reduces to an efficient bottom-up search
over lattice paths. To address (ii), Knight and Hatzivassiloglou augment the
generator, which may be prone to disfluency, with a statistical language model
that discriminates between lexical choices. Combined together, the generator
runs a beam search on the word lattice and the n-gram language model ranks
the top-K resulting sentences.

The Nitrogen system (Langkilde and Knight, 1998) continued to develop the
use of word lattices and statistical models for NLG. This work sustains focus on
handling insufficient input and KBs, but also specifies a new meaning represen-
tation2 composed of concepts and relations. It contributes a grammar formalism
and algorithm for mapping between MRs and word lattices. More concretely, the
grammar formalism recursively builds a word lattice from an MR using keyword
matching rules. Using an instance rule that acts on part of speech (e.g., noun or
verb), single concepts of the MR are converted to word lattice components. If the

2 Referred to as ‘MR’ to disambiguate with ‘AMR’.

6 Jin

instance rule fails to apply, a recasting mechanism transforms between seman-
tically equivalent structures to add the missing keywords. This mechanism can
rewrite MR components according to a range of linguistic constructs and seman-
tic depths. Compared to the rigid template-based or purely syntactic patterns
of previous NLG systems, Nitrogen employed rules that were more grounded in
semantic structure.

Nitrogen’s generative power and ability to encode multiple hypotheses trans-
ferred well to the problem of preserving ambiguity, a common concern in trans-
lation (Knight and Langkilde, 2000). Below is an example of such an ambiguous
sentence, along with two possible interpretations.

Joan saw the man with the binoculars.
a. With the binoculars, Joan saw the man.
b. The man with binoculars was seen by Joan.

The goal from an MT standpoint is to produce a translation that retains the
ambiguity of the source sentence. Due to syntactic differences, it may be non-
trivial to replicate the effect of source language word order in the target string.
The authors devise an algorithm to combine a pair of parse forests3 (i.e., packed
syntactic trees) such that one forest is contained in the other. Ambiguous mean-
ings are expressed by both forests and thus present in their intersection. The
routine for computing this intersection is described below.

1. Expand forests {F1, F2} into lattices {L1, L2}.
2. Rewrite both forests using a CFG.
3. Find F3 = F1 ∩ L2 and F4 = F2 ∩ L1 by using the respective forest’s CFG

to parse the lattice.
4. Return F5 = F3 ∪ F4 by merging the forests’ roots.

Step 3 involves computing the intersection of an FSA (e.g., a lattice) and CFG,
which can be done in polynomial-time. In this way, the internal representations
of Nitrogen permit an efficient, elegant solution to ambiguity preservation.

LTAGs. On the heels of Nitrogen, Bangalore and Rambow introduced the lex-
icalized tree-adjoining grammar (LTAG), which they implemented in the Fer-
gus generation system (2000). Though Nitrogen and Fergus both extract word
lattices, the inputs to Fergus are based on syntactic trees rather than seman-
tic MRs. The LTAG formalism offers a powerful mapping between inputs and
strings, as opposed to direct input linearization. As Langkilde and Knight ac-
knowledged, this allows for better detection of long-range dependencies.

Theoretically, tree-adjoining grammars (TAGs) (Joshi, 1987) are akin to
CFGs but rewrite trees rather than strings. TAGs build trees using two op-
erations: substitution, or replacement of a leaf by a tree, and adjunction, or
insertion of a tree at an internal node. Elementary trees that can only be sub-
stituted or adjoined are called initial or auxiliary, respectively. Each elementary

3 The authors note that it is easier to capture long-range dependencies over trees
rather than strings.

Text Generation from Abstract Meaning Representation 7

tree is associated with an anchor—or lexical item for LTAGs—that dictates how
it may connect to nonterminals in an enclosing tree.

Using an LTAG, it is possible to derive a sentence from elementary trees. This
derivation can also be written in derivation tree format. The input to Fergus
is a dependency tree similar to an LTAG derivation tree, but with only word-
labeled nodes. With a particular TAG called an XTAG, the system instead
assigns TAG trees to these nodes in a process called supertagging. The XTAG
is then used to linearize the partial derivation trees in the form of word lattices.
Finally, the highest scoring state path through the lattice is found using the
Viterbi algorithm.

The underlying tree-based representation of Fergus supported a more gen-
eralized, syntactic grammar rather than one focused on the generation task.
Bangalore and Rambow claimed that this benefit, in addition to its direct mod-
eling of morphological features, made it superior to Nitrogen.

2.2 Recent Approaches: Statistical

In recent years, there has been renewed interest in formalisms such as tree trans-
ducers and synchronous grammars. These systems offer powerful primitives for
mapping between semantic structures and strings, while still supporting a prob-
abilistic training framework. In fact, they often originate in MT due to the use-
fulness of hierarchical tree structures in encoding symbol-reordering patterns.

want-01

ARG0

boy

ARG1

fly-01
ARG0

kite

ARG2

X

ARG0

−→ X

boy

want-01 ARG1

X

fly-01 ARG2

X

kite

Fig. 5. AMR and transducer input tree for “The boy wants to fly the kite”. The re-
entrant edge from ‘fly-01’ to ‘boy’ is deleted in the latter to enforce acyclicity.

Since AMR is designed primarily with human annotators in mind, converting
them to trees is a challenge. A single AMR can have multiple valid realizations
in terms of tense, definiteness, number, etc. Whether it is possible to compensate
for underspecified graphs in downstream tree-to-string systems is unclear.

8 Jin

Tree Transducers. The tree transducer is a generalization of the finite-state
transducer (FST) that maps source to target trees using a set of states and rules.
It is easy to see that any FST-mapped pair of strings can be transposed into a
pair of trees, each containing exactly one node per level. Tree transducers are
thus more expressive than their string counterparts as their rules may include
multi-level subtrees.

For AMR input, Flanigan et al. (2016) use tree-to-string transducers to gen-
erate English (2016). They first extract a transducer input (TI) representation or
spanning tree (e.g., Fig. 5) using a BFS traversal of the AMR, where siblings are
visited in lexicographic order of their relation labels. Next, the decoded string
for this tree is found via a weighted intersection between a language model and
tree-to-string transducer.

Flanigan et al. extend a particular type of tree-to-string transducer de-
noted 1-XRLNs (Huang et al., 2006). This transducer is defined as a tuple
(N,Σ,W,R), where N is the set of nonterminals, Σ and W are input and out-
put alphabets, respectively, and R is the set of rules. Each rule in R includes the
LHS tree t with internal nodes in N and frontier nodes in (X ∪ Σ)∗, the RHS
string s ∈ (X ∪W)∗, and a mapping φ : X → N . A derivation d, along with its
source and target projections S(d) and E(d) can be defined recursively. If rule r
is devoid of nonterminals, then d = r and the source and target projections are
precisely s and t, respectively. Otherwise, the symbols in source projection S(d)
can be substituted by variables in t—likewise for E(d) and s—according to rule
r. As an example, the transducer rules for the sentence in Fig. 5 are as follows.

(X want-01 (ARG0 X1) (ARG1 X2)) → The X1 wants to X2.

(X fly-01 (ARG1 X1)) → fly the X1

(X kite) → kite

(X boy) → boy

Rules extracted for the transducer include basic, synthetic, and abstract rules
that generalize the training data as well as a small set of handwritten rules.
Synthetic rules are found using a discriminative model and serve to offset data
sparsity, which cannot be handled by basic rules alone. Abstract rules further
generalize basic rules by using part-of-speech (POS) tags. Finally, handwritten
rules help process dates, conjunctions, etc. and normalize concept labels. The
routines for obtaining the first three types are briefly described below.

Basic rules Alignments between subgraph ‘fragments’ and words are found
using the JAMR aligner (Flanigan et al., 2014). Each fragment is associated
with word indices b(i) and e(i) that fully cover the spans of all its children. In
the subsequence 〈wb(i) . . . we(i)〉, rules are induced by replacing child spans
with argument slots. Rules follow the general form of LHS fragments and
argument slots yielding RHS word spans punctuated by nonterminals.

Synthetic rules The LHS of the rules follows that of the basic ones, or LHS =
(f,A1, . . . , Am) for TI representation f and arguments A1, . . . , Am in the
relation set. For the RHS, the rule model concatenates a concept realization

Text Generation from Abstract Meaning Representation 9

c ∈W ∗ with argument realizations R1, . . . , Rm for Ri = 〈li, ri〉 in W ∗XW ∗.
The RHS is also described by concept position c ∈ [0,m] and permutations
k1, . . . , km ∈ [1,m] of R1, . . . , Rm. A linear model scores RHS instances for a
fixed LHS. Using dynamic programming, finding the K best RHS solutions
amounts to a brute force search over c and k1, . . . , km.

Abstract rules A POS abstract rule table supports lookup of RHS sequences
given concept realizations’ POS and argument labels. The POS is effectively
used as a key into this table, and all matching RHS sequences are substituted
with concept realization c.

In terms of the BLEU (Papineni et al., 2002) score for strings generated from test
data, removing synthetic rules results in an over 40% decrease in points. This
result suggests the benefit of using an argument realization model for extracting
such rules. In particular, the basic rules depend heavily on alignments in the
parallel corpora and thus may be vulnerable to data sparsity constraints.

PBMT. In phrase-based machine translation (PBMT) (Koehn et al., 2003)
the units of translation are phrases that can be reordered based on the tar-
get language. This method frames the problem in a Bayesian fashion; for for-
eign sentence f and English sentence e, p(e|f) ∝ p(f |e)p(e). The sentence-level
‘likelihood’ p(f |e) can be factorized into the joint probability of its component
phrases—subject to a separate distribution that models phrasal reordering:

p(f |e) =

I∏
i=1

φ(fi, ei)d(·),

where f is segmented into I phrases such that ei is the translation of fi for all
i ∈ I; φ(·) and d(·) are phrase translation and distortion probability distribu-
tions, respectively. It is possible to estimate φ(·) using relative frequencies in the
training data. Distribution d(·) can be parameterized by the (i−1)th end and ith

start indices of phrases in the foreign sentence. The ‘prior’ p(e) is captured in an
English language model. The objective is simply to find the highest probability
translation, which can be efficiently done using beam search.

Pourdamghani et al. apply PBMT to AMR-to-text generation by first lin-
earizing the AMR into strings that roughly follow English word order. Despite
the lack of intermediate tree-like representations, they achieve a sizeable boost
(4.9 BLEU points) over the previous baseline of Flanigan et al. (2016).

For linearization, they experiment with a pre-order DFS traversal over AMR
vertices, majority method that memorizes orderings within shared role sets, and a
classifier method of three binary classifiers that decide edge ordering operations.
To evaluate the methods, Pourdamghani et al. compute approximate concept-
word alignments and count the number of crossings between the hypothesized
AMR traversals and true word order. The classifier method achieves the lowest
number of edge crossings and best overall BLEU score. Empirically, they find
that linearization performance and BLEU score are positively correlated.

10 Jin

SNRGs. Prior approaches discussed so far have skirted the issue of faulty graph-
to-tree transformations. Errors caused by this stage—even before tree-to-string
mapping—can be propagated to the final generated string. Song et al. (2017)
apply a method that directly extracts and applies graph-fragment-to-string rules,
bypassing such harmful errors in the generation pipeline.

In general, a graph transducer is akin to its tree counterpart in that it bridges
input structures to output strings. A node replacement grammar (NRG) (En-
gelfriet and Rozenberg, 1997) includes rules to replace nonterminal nodes with
subgraphs, often in a context-free manner. The replacement involves a ‘mother’
graph M , subgraph S ⊆M , and ‘daughter’ graph D. Given a grammar rule, all
occurrences of LHS subgraph S in M are removed to create M−. An embedding
mechanism E then governs how to attach copies of RHS daughter D to M−,
effectively replacing all S with D in M . The localized, precise way in which these
substitutions occur allow the NRG to capture recursive construction of graphs.

S

[S]

→ X1

[X1]

→ X2

[X2] to go

ARG1

ARG0

go-01 →
X3

[X3] wants to go

ARG0 ARG1

want-01

go-01

ARG0

→
boy

The boy wants to go

ARG0 ARG1

want-01

go-01

ARG0

Fig. 6. Sample derivation for “The boy wants to go”, where target strings are below
AMR fragments—adapted from Song et al. (2017).

Song et al. use a synchronous NRG that differs in the sense that the RHS of a
rule is not a single graph D, but a bijection-linked graph-string pair (〈D,T 〉,∼),
where T is a target string and ∼ a mapping between nonterminals in D and T .
The formalism must include nonterminals N , as well as source terminals Σ and
target terminals ∆ such that D ∈ (N ∪ Σ)∗ and T ∈ (N ∪ ∆)∗. To solve the
problem of AMR graph-to-string mapping, Song et al. train a heuristic algorithm
to extract productions P during training. At test time, the graph transducer is
then applied to linearize unseen AMRs.

The productions in the SNRG include induced, concept, and graph glue rules.
The induced rules are found from training AMR-sentence pairs using an exist-
ing phrase-to-graph-fragment extraction algorithm. These rules initially contain
only terminals from Σ and ∆. They are then pairwise merged when one graph-
phrase pair contains the other, creating the final induced rules. Concept rules
are introduced between pairs of AMR concepts and morphological strings that
are not covered by induced rules. Finally, graph glue rules are added to generate
all edges between nonterminals in graph-string pairs.

To find the best generated target string among all derivations, Song et al.
use a log-linear model that is based on PBMT Koehn et al. (2003). The model

Text Generation from Abstract Meaning Representation 11

includes ‘translation’ probabilities of AMR fragments given target strings, a
reordering model, and a moving distance feature. The former two components
are extended from PBMT, while the last component encodes merge distance
between consecutive subgraphs. Performance-wise, the model improved over the
previous state-of-the-art results of Flanigan et al. (2016) by 2.62 BLEU points.

2.3 Recent Approaches: Neural

Continuing in the vein of extending MT models to NLG, neural machine transla-
tion (NMT) has rapidly gained traction as the successor to statistical MT. Deep
neural networks may have massive model complexity, yet the end-to-end nature
of their training via backpropagation yields efficient parameter tuning. It is this
capacity for streamlined, often highly parallel optimization that may put neural
models ahead of their statistical counterparts.

Initial attempts to apply existing neural approaches to MT faced the barrier
of variable-length inputs and outputs. Neural models for tasks such as image
recognition or segmentation expect fixed-size inputs such that each input pixel
directly maps to an output label. On the other hand, source and target sentences
in MT have lengths and alignments that are not known a priori. Sequence-to-
sequence models were born out of the need to handle such sequential data that
exist in domains such as natural language.

Sequence-to-Sequence. Following previous work in neural sequence learn-
ing, Sutskever et al. (2014) use a pair of recurrent neural networks (RNNs) to
encode and decode variable-length inputs. Specifically, they use two Long Short-
Term Memory (LSTM) networks—one to compress the input sequence into a
fixed dimension vector, the other to dynamically generate an output sequence.
The main contribution is the use of LSTMs over vanilla RNNs in this encoder-
decoder framework. LSTMs excel at retaining long-term dependencies, making
them suitable for handling global patterns within long sequences. The ability of
LSTM networks to ‘remember’ over many time steps is useful to (i) ensure that
relevant global information of the input is stored in vf and (ii) emit the current
element et based on a sufficiently long history of past emissions.

In the encoder-decoder framework, the decoder must estimate the conditional
probability of the output sequence of length T ′ given the compressed input vector
vf from the encoder of length T , decomposed as:

p(e1 . . . eT ′ | f1 . . . fT) =

T ′∏
t=1

p(et | vf , e1 . . . et−1).

Each term in the product is computed as a softmax over the output vocabulary,
where unseen words are mapped to an UNK symbol. Since output elements are
predicted individually, the fact that output length T ′ is initially unknown is
not problematic—each output sequence ends with an EOS symbol so that the
distribution includes an option to terminate with nonzero probability. Similar

12 Jin

to statistical decoders, finding the best output sequence involves running beam
search using the decoder LSTM and using log probability of the partial output
sequence to score hypotheses.

Sutskever et al. additionally find that reversing input training sequences al-
lows for improved locality of mapping between inputs and outputs. For example,
[c, b, a] 7→ [a′, b′, c′] instead of [a, b, c] 7→ [a′, b′, c′] results in mapping distances
[5, 3, 1] instead of [3, 3, 3], respectively. The decoder begins by reading hidden
state T from the encoder, so this ordering provides it with a ‘fresher’ represen-
tation of elements earlier in the input sequence.

On the WMT’14 English to French translation task, Sutskever et al. achieve
a 3.2 BLEU score improvement over the previous neural baseline, but still trail
behind a PBMT system by 0.5 points. Despite the model’s ‘depth’ with an ensem-
ble of five LSTMs, it appears to struggle with capturing sequential relationships
that a simpler statistical model can.

Soft Attention. More or less concurrently with Sutskever et al., Bahdanau
et al. (2015) introduce a sequence-to-sequence model specialized for MT. In
previous model variants, requiring the encoder to compress all inputs to vectors
of fixed size still limits the model’s ability to process dynamic-length inputs.
They propose a soft attention component (Fig. 7) that lets the model learn ‘soft’
weightings of individual input elements based on relevance to the current target
word prediction. This way, the model learns input context vectors unique to each
target prediction, instead of pre-computing a representation shared among all
decoder steps. Even in the absence of ground-truth alignments, a neural model
may learn task-specific patterns in attending to inputs.

To more precisely describe the soft attention decoder, the context vector vf
from the model by Sutskever et al. becomes vt for decoder step t ∈ [1, T ′], where:

vt =

Tf∑
i=1

αtihi,

αti =
exp(eti)∑Tf

j=1 exp(etj)
.

In the above equations, αti represents a weight of a particular hidden state hi
for encoder input i ∈ [1, Tf]. The encoder producing these hidden states is not a
single LSTM, but a bidirectional RNN that encodes hidden states in left-to-right
and right-to-left passes over the input. At every decoder step t, Tf such weights—
one per input hidden state—feed into vt. As the weights {αti | 1 ≤ i ≤ Tf}
specify a distribution over inputs, they must be normalized to sum to one. The
vector eti represents an alignment model for how closely input i relates to output
t. It is calculated as a function of the previous decoder state st−1 and an encoder
state hi. The soft attention mechanism allows a model to ‘jointly align and
translate’ since cost function gradients can be propagated backwards in an end-
to-end fashion. From another angle, this attention mechanism facilitates selective
retrieval; the decoder can simultaneously rank and fetch pertinent inputs.

Text Generation from Abstract Meaning Representation 13

et−1 et

. . . st−1 st . . .

+ vt

h1 h2
. . . hT

h1 h2
. . . hT

f1 f2 fT

αt1 αt2 αtT

Fig. 7. Illustration of soft attention mechanism, adapted from Bahdanau et al. (2015).
The ⊕ symbol denotes an alignment-weighted sum of hidden states stored in vt.

Performance-wise, the system surpasses a baseline encoder-decoder model
(Cho et al., 2014) both quantitatively and qualitatively. For the former, Bah-
danau et al. achieve a fairly stable BLEU score across sentences of increasing
length up to sixty words. The baseline model BLEU scores, however, steadily
decreased when length exceeded about twenty. This supports the idea that soft
attention remedies the bottleneck effect of compressing inputs into vectors of uni-
form length. The proposed model also outperforms baselines by 7.57–8.93 BLEU
points, and it slightly overtakes a PBMT model when trained on sentences of
within-vocabulary words only. This may imply that the sparse, high-dimensional
vocabulary is a salient obstacle for neural models to overcome. Finally, includ-
ing explicit alignment weights in the model provides transparency in aligment
quality—it is possible to visualize relationships between source and target words.

Paired Parsing and Generation. As mentioned in Section 1.1, NLG models
often opt to linearize AMR graphs to produce an intermediate sequence. This
step creates a more canonical graph representation and is in fact a necessity to
coerce graphs into input sequence format for sequence-to-sequence models.

Konstas et al. (2017) present a novel training procedure for both an AMR
parser and generator that is invariant to linearization order. Their system relies
on a large unlabeled corpus of sentences to help alleviate the sparsity of parallel
sentence-AMR corpora. More concretely, the paired training approach involves
(i) bootstrapping a parser using self-training on unlabeled data and (ii) feeding
graphs parsed in the previous step to a generator as pre-training data. In addi-
tion to this routine, Konstas et al. also use a preprocessing method that simpli-
fies AMRs and their corresponding sentences through a form of anonymization.
In essence, anonymizing subgraphs and their aligned text spans reduces graph
structure complexity and vocabulary size. This reduced complexity in the target
and source space helps compensate for data sparsity constraints.

14 Jin

To highlight the overlap between AMR parsing and generation, Konstas et al.
formulate the two problems as the respective predictions:

â = arg max
a

f(a | s; θP),

ŝ = arg max
s

f(s | a; θG),

where a denotes the AMR graph and s the sentence. The predictor family f and
sequence-to-sequence model architecture are common among the two tasks. The
primary difference lies in the separate parameters θP for parsing and θG for gen-
eration. Interestingly, Konstas et al.’s work is inspired by a back-translation MT
system (Sennrich et al., 2016) that uses automatic translations of a large, target-
side monolingual corpus as added parallel data. This tactic enriches training for
low-resource language pairs, and it transfers to the AMR-sentence ‘translation’
task as well.

In this work, the sequence-to-sequence model extends that of Bahdanau et al.
(2015). Konstas et al. make two changes to the encoder: (i) concatenate forward
and backward LSTMs across all time steps instead of only the relative final ones
and (ii) add dropout to the first layer. They also employ a copy mechanism in
the generator decoder, which copies an AMR concept label as token output when
the decoder emits the UNK symbol.

At a high level, the paired training method leverages an unlabeled sentence
set Se from which AMR graphs are parsed and then used as training data for the
generator. Empirically, the set Se is of size 200K–20M drawn from the Gigaword
corpus. The true dataset D serves as pre-training data for the parser and fine-
tuning data for the generator. Below is an overview of the full training procedure.

1. Train the parser on original dataset D to learn parameters θP .
2. Tune the parser with N cycles of self-training, drawing k · 10i samples from
Se each cycle for i ∈ [1, N].
(a) Parse samples Ai

e from unlabeled sentences Si
e.

(b) Update θP by training on parallel sets (Ai
e, S

i
e).

(c) Fine-tune θP on the original data D.
3. Given k · 10N new samples from Se, parse AN

e from this sampled SN
e .

4. Train the generator on parallel sets (AN
e , S

N
e) to learn parameters θG.

5. Fine-tune θG on original dataset D.

In addition to the above training routine, the method for preprocessing AMRs
also has direct bearing on the models’ performance. One technique is anonymiza-
tion, which plays a key role in eliminating rarely occurring AMR entities. Konstas
et al. found that certain types—including named entities, dates, and numbers—
make up 31.2% of the word vocabulary with 83.4% of them occurring fewer
than five times. They anonymize AMRs by collapsing subgraphs whose roots
are named entities or quantities with a single categorical node, as well as nor-
malizing format of date entities. In the parallel sentences, they find token spans
aligned to these collapsed subgraphs and replace the sentence span with corre-
sponding anonymized tokens. Besides modifying the topology and concept labels

Text Generation from Abstract Meaning Representation 15

of AMRs, Konstas et al. also linearize them in a standardized way; they traverse
them in a DFS order that includes edge labels of the backward pass (i.e., each
edge is covered twice). In its string format, each graph is composed of its root’s
concept label followed by edge labels and child subgraphs—this recursive scope
is captured by nested pairs of parentheses.

Following the paired training and preprocessing steps described above, Kon-
stas et al. markedly improve upon parsing and generation baselines. Using 20M
external unlabeled sentences, the parser surpasses a prior sequence-to-sequence
model (Peng et al., 2017) by 10.1 Smatch (Cai and Knight, 2013) F1 points.
This improvement dips to 3.5 points without external data, proving the merits
of careful preprocessing alone. With the same amount of external data, the gen-
erator outperforms systems of Pourdamghani et al. (2016) and Flanigan et al.
(2016) by 6.9 and 10.8 BLEU points, respectively. Finally, Konstas et al. conduct
experiments showing that the model is insensitive to linearization order. When
given a random as opposed to human annotator AMR traversal, the generator’s
BLEU score is only 1.4 points lower in the former than in the latter case. There
is ample evidence that Konstas et al.’s application of an external corpus and
preprocessing boosts sequence-to-sequence model performance on AMR.

Graph-to-Sequence. Although Konstas et al. develop a model that is largely
unaffected by linearization order, they fail to remedy the constraint itself. Re-
gardless of the heuristic, flattening a graph often misrepresents its underlying
structure (e.g., nodes that are neighbors may be pushed far apart). Song et al.
(2018) address this limitation of sequence-to-sequence models by using a graph-
based LSTM encoder instead (for generation specifically). Under this graph-to-
sequence model, an AMR’s graph structure is directly encoded; node informa-
tion is propagated along graph edges via message passing over time steps. Using
LSTM cells for recurrent propagation supports a more global distribution of lo-
cal context across a graph, just as in the standard sequence-to-sequence encoder
across a sequence. As per Konstas et al. (2017), the model uses a copy mech-
anism in the decoder to copy rare entities to the output. By representing the
topology of AMR more accurately, Song et al. reach higher BLEU on generated
sentences than Konstas et al. (2017).

Given an AMR graph denoted G = (V,E), the node hidden states are vectors
{hti | vi ∈ V, t ∈ [1, T]}, where the number of time steps T is a hyperparameter.
Each node’s hidden state is updated with node and edge label vectors from its
incoming and outgoing neighbors. For vector hti, its neighborhood node state vti
and edge state uti are:

vti =
∑

(i,j,l)∈EN (i)

ht−1j ,

uti =
∑

(i,j,l)∈EN (i)

et−1ijl ,

where (i, j, l) is an edge tuple from i→ j with relation label l; EN contains edges
to its neighborhood N . This computation is done separately for incoming and

16 Jin

outgoing edge sets (i.e., the above equations define outgoing edges and i and j
are swapped in the case of incoming edges).

To compute the updated node hidden state hti, an LSTM unit with a gate-
wise combination of {vti , uti} for each of the two edge directions (i.e., incoming
and outgoing) is used. More concretely, let gate g be in G = {f, p, o, c̃}, or forget,
input, output, and candidate cell gates.

gti = σ(W1v
t
i1 +W2v

t
i2 +W ′1u

t
i1 +W ′2u

t
i2),

cti = f ti � ct−1i + pti � c̃ti,
hti = oti � tanh(cti),

where gti is found for each gate in G using separate weights in {W1,W2,W
′
1,W

′
2};

subscripts 1 and 2 indicate incoming and outgoing directions, respectively.
The outgoing edge embeddings are initialized as:

eijl = We([xl;xj ;hjc]) + be,

where xl is embedding of edge label l and xj is that of vj ’s node label; hjc is the
final hidden state of a character LSTM on vj . The purpose behind concatenating
hjc is to help improve representations of out-of-vocabulary labels. Incoming edge
embeddings are defined analogously to the above.

Song et al. use a bidirectional LSTM decoder with soft attention as described
by Bahdanau et al. (2015). They modify alignment model vector eti to depend
on final hidden state hTi and edge state uti, as well as on a coverage vector γt−1
(Tu et al., 2016). The latter vector is a sum over the attention distribution:

{αt′i | 1 ≤ t′ ≤ t− 1, vi ∈ V }.

They add a copy mechanism, which is an interpolation of (i) the per-node atten-
tion distribution and (ii) the per-word vocabulary distribution4 (i.e., the former
is weighted by θ, the latter 1 − θ). The decoder can more heavily weight the
attention distribution in order to ‘copy’ a node’s label. Song et al. claim that
the copy mechanism is advantageous over the anonymization used by Konstas
et al. (2017) since no manual preprocessing rules are required—the model learns
to copy low frequency labels automatically.

In terms of results, Song et al. reach a BLEU score of 23.3 that is 1.3 points
higher than that of Konstas et al.. When using an external corpus of size 200K
and 2M, the improvement is 0.8 and 0.7 points over the respective models by
Konstas et al. (2017). This suggests that the proposed model is also able to fully
leverage large-scale amounts of data. In addition to better performance, Song
et al. note that the model offers improved efficiency; reminiscent to loopy belief
propagation, the node updates can occur in parallel rather than sequentially.
One can visualize the information being propagated across increasing diameters
of a node’s neighborhood instead of left-to-right over a linearization. In addition,
using a graph structure directly allows for distribution of edge-level features for
richer node representations.

4 Computed from the concatenated context vector vt and LSTM state st.

Text Generation from Abstract Meaning Representation 17

3 Future Directions

After reviewing the existing literature, finding a more direct alignment between
graphs and sentences seems to be a driving goal in NLG from AMR. Both statis-
tical and neural methodologies grapple with how to represent the rich, unordered
graph structure such that English generation is more tractable. As alluded to in
Section 1.1, this complexity may be a bottleneck in making great strides on the
NLG task for semantic graphs.

In this section, we will first compare the merits of existing work with respect
to this problem and synthesize the findings. Then we will revisit transition-based
parsing and its potential to simplify AMR-to-text generation. Lastly, details of
a novel graph-to-sequence system will be discussed.

3.1 Synthesis

Statistical. A ‘common ancestor’ of several statistical approaches in Section 2.2
has been PBMT (Koehn et al., 2003). It is clear that learning to map source-
target phrase pairs using joint phrase and reordering distributions performs well
on string domains. When adapting this model to the generation task, the extent
to which AMR graph structure is retained varies across methods. There is ev-
idence that learning word-order graph traversals may in fact be more effective
than reordering rules.

Pourdamghani et al. (2016) use a classifier-based method to minimize cross-
ings between aligned concept-phrase pairs in a linearized graph. In contrast,
Flanigan et al. (2016) convert the AMR to a spanning tree before applying a
tree transducer that applies rules resulting in the best sequential ordering of tree
concept and argument realizations. Although it is arguable that Flanigan et al.
(2016) use a more sophisticated tree representation than the graph linearization
of Pourdamghani et al. (2016), the latter work is ultimately more faithful to the
graph structure. In other words, Pourdamghani et al. learn a direct graph lin-
earization that not only avoids data loss from graph-to-tree conversion, but may
even preserve added graph-related semantics. One can conclude that modify-
ing the true AMR structure (e.g., removing re-entrancies) may negatively affect
quality of the generated text.

Similar to Flanigan et al. (2016), Song et al. (2017) use a grammar-based sys-
tem to map between structures and a decoder inspired by PBMT. However, their
grammar rules are graph-to-string to avoid error propagation from graph-to-tree
conversion. Although the rules closely capture input structure, the performance
lags behind that of Pourdamghani et al. (2016). This indicates that using a
PBMT-based decoder may not be practical for the generation problem—perhaps
it induces loss in structural information.

Neural. The neural models covered in Section 2.3 stem from the family of
sequence-to-sequence models that have an encoder-decoder architecture. Unlike
most statistical methods, these neural models are less reliant on carefully cho-
sen features or grammar rules than on data-driven parameter optimization. As

18 Jin

such, their abundance of parameters make them susceptible to the data sparsity
common in parallel AMR-sentence corpora. To combat this issue, preprocessing
routines to simplify the AMR structure have been adopted. An additional ap-
proach involves using large amounts of automatically annotated external data.
Even if reducing input dimensionality or increasing data quantity solves the
sparsity problem, the issue of learning graph-sentence alignments remains.

The paired training procedure between both a parser and generator by Kon-
stas et al. (2017) leverages enough external training data that linearization order
seems to have a negligible effect. However, they acknowledge that the traversal
based on human-annotated AMRs still results in the highest BLEU score. It is
also important to note their extensive amount of AMR preprocessing to achieve
the desired amount of ‘anonymization’; this amount of manual work is not only
time-consuming but may result in loss of information from AMR entities. As
an alternative, Song et al. (2018) use a novel graph-to-sequence model that re-
moves the need to flatten input AMRs. To deal with out-of-vocabulary words,
Song et al. (2018) use only a trainable copy mechanism instead of anonymiza-
tion and post-processing. This allows the model to modulate the decision to copy
concept labels instead of relying on preprocessing.

As in previous models, Song et al. (2018) use soft attention (Bahdanau et al.,
2015) that permits the model to learn alignments between target words and the
source graph. Although this may appear reasonable, the role of attention in the
graph-to-sequence model may be more fraught than in a linearized sequence-to-
sequence model. In the former, node updates in the encoder occur over possibly
overlapping node-level neighborhoods from the input graph. In the latter, the
predetermined AMR linearization controls the path through which node-wise
information is propagated. It is possible that the node hidden states from the
graph encoder contain less local, traversal-specific context than in the sequence
variant. If so, the attention mechanism would need to jointly traverse the AMR
concepts and align concepts to word emissions. Perhaps the overhead of both
such tasks would overburden a single model component, especially given the data
sparsity issue. The task that follows, then, is to find a way to decouple traversal
and alignment.

3.2 Transition-Based AMR Parsing

Given the overarching issues found in Section 3.1, an ideal model will accurately
reflect input structure, as in the graph encoder, while preserving the local context
of a word-order graph traversal. Using an encoder-decoder model, it is sensible to
retain the graph encoder by Song et al. (2018) and modify only the decoder. This
decoder would need to both traverse the AMR and emit English tokens aligned to
each concept. As introduced in Section 1.2, the cache transition system (Gildea
et al., 2018) is capable of mapping between the input word order and bags of a
graph (i.e., cache configurations) in an incremental manner. We can thus reframe
the decoding problem as learning a sequence of transition-based actions parsing,
or rather decomposing, the graph according to word order of the target sentence.

Text Generation from Abstract Meaning Representation 19

Properties of AMR. As introduced in Section 1, an AMR (Banarescu et al.,
2013) annotates the meaning of a sentence through a graph of concepts and
their connective relations. These concepts can represent verbs, nouns, or other
concepts labeled by PropBank (Palmer et al., 2005) framesets (e.g., kick.01).
Accordingly, the relations depend on the concept’s semantic role (e.g., arguments
arg0 for the ‘kicker’ and arg1 for the object kicked). AMR was designed to be a
comprehensive sembank that is both human-readable and machine-traversable.
Satisfying these properties, along with ease of annotation, comes at the cost of
less specificity with respect to parallel sentences.

With more abstraction, finding subgraph-phrase alignments in AMR is not
always straightforward. Specifically, the laconic nature of AMR means that sin-
gle concepts may commonly map to multi-token phrases. There could also exist
null alignments; a concept may not map to any words, and vice versa. We ob-
serve, then, that the local context of an AMR concept (i.e., its relations and
immediate neighbors) is highly relevant in a text generation setting; concept
labels in isolation may not contain enough discriminative information.

Sequence-to-Action-Sequence. Section 1.2 covered the mechanics of a cache
transition system that gradually parses an input sentence into its AMR. Note
that the cache size required to parse a given AMR depends on the left-to-right
order of input words. More explicitly, let π(T) be the vertex order of the preorder
traversal of graph G’s tree decomposition T (e.g., Fig. 3), where the newly intro-
duced vertex of each bag is emitted. This order is precisely the word order of the
input sequence. Recall that each bag of T maps to a specific cache configuration
at a point in a parser’s run. The minimum width over the set of all derivation
trees {T ′} for G—that represents the possible parser runs—is limited by the
per-tree vertex order π(T ′) (Gildea et al., 2018). Due to this correspondance, we
can conclude that the series of cache configurations over the course of a parser
run captures information about a word-order traversal of G’s vertices.

To exploit the local context present at each step of a transition-based parser
run, Dyer et al. (2015) propose the stack LSTM structure for neural syntactic
parsing. These stack LSTMs maintain continuous representations of a parser’s
state following push or pop operations. For insertion into and removal from a
data structure, they maintain stack pointers that support dynamic reordering
of elements (i.e., one can remove an element’s back-pointer to pop it, then at-
tach the pointer to a new element for push). This way, the current stack top
contains a history-specific context of the data structure’s contents. Dyer et al.
apply stack LSTMs to the buffer, stack, and transition sequence to track their
states. Although this work pertains to syntactic dependency parsing rather than
semantic generation, it illustrates the value of sequential parser configurations
for learning parser actions.

A semantic parsing method proposed by Buys and Blunsom (2017) uses a
standard bidirectional LSTM encoder and hard-attention decoder to directly
map sentences to parser transition sequences, referred to as a sequence-to-action-
sequence approach. Broadly, the training is supervised by transition sequences

20 Jin

from an oracle algorithm that deterministically parses the input. In contrast to
soft attention Bahdanau et al. (2015) that learns distributions over encoded in-
puts, the hard-attention mechanism enforces discrete alignments between nodes
and token spans using a pointer network (Vinyals et al., 2015).

Similar to Buys and Blunsom, Peng et al. (2018) use a sequence-to-action-
sequence model to output cache transition parser actions for AMR. Peng et al.
use two LSTM encoders that operate in tandem on respective word and concept
sequences. They map word spans to anonymized AMR concepts before parsing,
instead of delaying alignment until parser execution. Thus, alignment is decou-
pled into two stages: partitioning the sentence into phrases and phrase-concept
mapping. For each transition prediction, Peng et al. use hard attention on both
buffer elements and input words via a pair of per-sequence pointers sweeping
from left to right. Crucially, they also use features from the current transition
system configuration to provide local context to the decoder. Just as in Dyer
et al. (2015), this work further supports the benefits of incremental context from
a transition system.

3.3 Proposed System

Despite the fact that Section 3.2 outlines approaches for parsing, we will argue
that similar systems can apply to AMR-to-text generation. Specifically, we will
show how transition-based parsing aids in the goals of learning word-level AMR
traversals and local node-wise context identified in Section 3.1.

Parser Transitions. On the left side of Fig. 8, a typical state diagram for an
AMR cache transition parser is shown. In addition to the standard push and pop
transitions, the shift and arc/noarc actions are added. The former indicates a
transfer of focus to the next buffer element, while the latter is an indicator vari-
able for whether to build an arc between two cache elements (i.e., the rightmost
element and any remaining one).

shift push arc/noarc pop shift/push pop

Fig. 8. State diagrams for parsing (left) and proposed generation (right) using the
cache transition system.

In Section 1.1, we established that generation can be seen as the inverse of
parsing—instead of creating arcs between concepts, we destroy them, emitting

Text Generation from Abstract Meaning Representation 21

the words aligned to each concept upon removal from the AMR. On the right side
of Fig. 8, a possible state diagram for the generation task is pictured. Note that
the arc/noarc action has been eliminated since edges no longer need to be built.
For generation, it is also necessary to choose the next concept to process from
the unordered AMR graph, since elements are no longer arranged in a sequence.
In aggregate, these choices are essentially the word-order traversal order of the
AMR graph discussed in Section 3.1. Thus, the generation variant of shift must
be associated with a buffer index of the subsequent element for push. Identical to
the parsing variant, the push action is accompanied by a chosen cache index to
evict. For simplicity, we merge the shift transition with push during generation,
since the latter transition always follows the former.5

Model Architecture. The sequence-to-action-sequence model architecture ap-
pears suitable for parsing, and Peng et al. (2018) show that parser context can
be incorporated into predictions. This property has proven helpful for generating
parser actions in an incremental fashion. For the generation task, however, the
following tasks still remain.

1. Selecting a word-order linearization of the AMR.
2. Producing English tokens aligned to each element of the concept sequence.

In concordance to the system by Song et al. (2018), we will use the same graph
encoder in the proposed model, which will therefore become a graph-to-action-
sequence approach. To capture both the structural context of the AMR (for
task 1) and alignments between concepts and phrases (task 2), we will draw
inspiration from a syntactic MT system by Wu et al. (2017). Their decoder
consists of parallel word and action LSTMs, each of which produces one of the
below sequences.

1. Shift-reduce parser actions to capture syntactic transformations between a
sentence pair.

2. Target language tokens that are based on the current syntactic tree fragment.
These are only emitted if the current parser LSTM prediction is shift.

Note that the above two sequences conform to the tasks identified earlier in the
paragraph. We have also reduced our parser action vocabulary size to two, and
these actions map nicely onto the shift and reduce actions of the syntactic parser
used by Wu et al. (i.e., shift/push for the former and pop for the latter).

The only major discrepancy between our AMR-to-text objective and that of
Wu et al. that remains is the complexity of alignments between AMR concepts
and English tokens. In Wu et al. (2017), each parser action corresponds to exactly
one token emitted (i.e., one-to-one alignment). As noted in Section 3.2, however,
the parallel AMR-sentence corpora can contain one-to-many (and the reverse),
as well as null alignments. To remedy this issue, we will allow the action LSTM

5 The generation state diagram is also pleasantly symmetric and all state transitions
are possible. This may simplify model predictions since no action sequence is ‘illegal’.

22 Jin

to repetitively query the word LSTM until it receives a ‘stop’ symbol from the
latter. This symbol will be added to the English word vocabulary prior to model
execution and can be seen as an ‘end-of-phrase’ symbol for words aligned to a
given concept. This flexibility in communication between the two LSTMs allows
for a variety of different alignments found in the AMR corpora.

4 Conclusion

Throughout this paper, we have followed the evolution of a variety of statistical
and neural approaches for AMR-to-text generation, in addition to related prob-
lems in machine translation and parsing. The most pressing barriers of the former
are the structural complexity of AMR graphs and wide vocabulary of both con-
cept labels and English tokens. To overcome these challenges, we hypothesize
that it is best for a model to separately learn the (i) word-order traversal of
AMR and (ii) concept-aligned English tokens. Accordingly, we propose a neural
graph-to-action-sequence model that leverages both graph-specific input mod-
eling and the reduced output space of cache transition parser sequences. The
configurations of the parser provide further context relating to the input graph
structure and output word order.

Text Generation from Abstract Meaning Representation 23

References

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Rep-
resentations (ICLR), 2015.

L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob,
K. Knight, P. Koehn, M. Palmer, and N. Schneider. Abstract meaning rep-
resentation for sembanking. In Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, pages 178–186, 2013.

S. Bangalore and O. Rambow. Exploiting a probabilistic hierarchical model
for generation. In Proceedings of the 18th Conference on Computational
Linguistics-Volume 1, pages 42–48, 2000.

J. Buys and P. Blunsom. Robust incremental neural semantic graph parsing. In
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1215–1226, 2017.

S. Cai and K. Knight. Smatch: an evaluation metric for semantic feature struc-
tures. In Proceedings of the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 748–752, 2013.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN
encoder–decoder for statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1724–1734, 2014.

C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith. Transition-
based dependency parsing with stack long short-term memory. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 334–343, 2015.

J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Handbook
of Graph Grammars and Computing by Graph Transformation: Volume 1:
Foundations, pages 1–94. World Scientific, 1997.

J. Flanigan, S. Thomson, J. Carbonell, C. Dyer, and N. A. Smith. A discrimi-
native graph-based parser for the Abstract Meaning Representation. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–1436, 2014.

J. Flanigan, C. Dyer, N. A. Smith, and J. Carbonell. Generation from Abstract
Meaning Representation using tree transducers. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 731–739, 2016.

D. Gildea, G. Satta, and X. Peng. Cache transition systems for graph parsing.
Computational Linguistics, 44(1):85–118, 2018.

L. Huang, K. Knight, and A. Joshi. Statistical syntax-directed translation with
extended domain of locality. In Proceedings of AMTA, pages 66–73, 2006.

A. K. Joshi. An introduction to tree adjoining grammars. Mathematics of
Language, 1:87–115, 1987.

24 Jin

K. Knight and V. Hatzivassiloglou. Two-level, many-paths generation. In Pro-
ceedings of the 33rd Annual Meeting on Association for Computational Lin-
guistics, pages 252–260, 1995.

K. Knight and I. Langkilde. Preserving ambiguities in generation via automata
intersection. In AAAI/IAAI, pages 697–702, 2000.

P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology-
Volume 1, pages 48–54, 2003.

I. Konstas, S. Iyer, M. Yatskar, Y. Choi, and L. Zettlemoyer. Neural AMR:
Sequence-to-sequence models for parsing and generation. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 146–157, 2017.

I. Langkilde and K. Knight. Generation that exploits corpus-based statistical
knowledge. In Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on Computa-
tional Linguistics-Volume 1, pages 704–710, 1998.

C. Lyu and I. Titov. AMR parsing as graph prediction with latent alignment. In
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 397–407, 2018.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71–106, 2005.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages 311–318, 2002.

X. Peng, C. Wang, D. Gildea, and N. Xue. Addressing the data sparsity issue in
neural AMR parsing. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers, pages 366–375, 2017.

X. Peng, L. Song, D. Gildea, and G. Satta. Sequence-to-sequence models for
cache transition systems. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages
1842–1852, 2018.

N. Pourdamghani, K. Knight, and U. Hermjakob. Generating English from
Abstract Meaning Representations. In Proceedings of the 9th International
Natural Language Generation Conference, pages 21–25, 2016.

R. Sennrich, B. Haddow, and A. Birch. Improving neural machine translation
models with monolingual data. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 86–96, 2016.

L. Song, X. Peng, Y. Zhang, Z. Wang, and D. Gildea. AMR-to-text generation
with synchronous node replacement grammar. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 7–13, 2017.

L. Song, Y. Zhang, Z. Wang, and D. Gildea. A graph-to-sequence model for
AMR-to-text generation. In Proceedings of the 56th Annual Meeting of the

Text Generation from Abstract Meaning Representation 25

Association for Computational Linguistics (Volume 1: Long Papers), pages
1616–1626, 2018.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–
3112, 2014.

Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li. Modeling coverage for neural machine
translation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 76–85, 2016.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in
Neural Information Processing Systems, pages 2692–2700, 2015.

S. Wu, D. Zhang, N. Yang, M. Li, and M. Zhou. Sequence-to-dependency neural
machine translation. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pages 698–707,
2017.

	Text Generation from Abstract Meaning Representation

